Bài tập phương trình tiếp tuyến cơ bản và nâng cao

TÓM TẮT LÝ THUYẾT

Tiếp tuyến của đồ thị hàm số y=f(x)  tại điểm M(x0,y0) có phương trình là: yy0=f(x0)(xx0)

  • Điểm M(x0,y0) được gọi là tiếp điểm của tiếp tuyến và đồ thị, y0=f(x0).
  • f(x0) là hệ số góc của tiếp tuyến.

Chú ý:

  • Hai đường thẳng song song thị hai hệ số góc bằng nhau.
  • Hai đường thẳng vuông góc thì tích hai hệ số góc bằng -1.

BÀI TẬP

Bài 1: Cho hàm số y=x33x2+2 có đồ thị (C). Viết phương trình tiếp tuyến của đồ thị (C) :

  1. Tại điểm có hoành độ bằng (-1).
  2. Tại điểm có tung độ bằng 2.
  3. Biết tiếp tuyến có hệ số góc k = -3.
  4. Biết tiếp tuyến song song với đường thẳng y=9x+1
  5. Biết tiếp tuyến vuông góc với đường thẳng y=124x+2
  6. Biết tiếp tuyến có hệ số góc nhỏ nhất trong tất cả các tiếp tuyến của đồ thị (C).
  7. Biết tiếp tuyến đi qua điểm A(1;2)

Bài 2: Cho đường cong (C):y=x33x2+2. Viết phương trình tiếp tuyến của (C), biết:

  1. Tiếp điểm có hoành độ là 2.
  2. Tiếp tuyến có hệ số góc k = 9.
  3. Tiếp tuyến đi qua điểm A(0;3).

Bài 3: Cho đường cong (C):y=x2+x+1x. Viết phương trình tiếp tuyến của (C), biết:

  1. Tiếp điểm có tung độ bằng –
  2. Tiếp tuyến vuông góc với đường thẳng x – 3y + 10 = 0.
  3. Tiếp tuyến đi qua điểm M(2;3).

Bài 4: Viết phương trình tiếp tuyến của (C):y=x(x3)2 biết tiếp tuyến song song với đường thẳng (d): y = 24x – 2.

Bài 5: Viết phương trình tiếp tuyến của (C):y=x2x+1 biết tiếp tuyến đó vuông góc với đường thẳng (d): x + 3y – 4 = 0.

Bài 6: Cho đường cong (C):y=x4+x2+1. Viết phương trình tiếp tuyến của (C):

  1. Tại điểm có tung độ là 1.
  2. Biết hệ số góc của tiếp tuyến là 6.
  3. Biết tuyến tuyến song song với đường thẳng y + 1 = 0.

Bài 7: Cho đường cong (C):y=14x4x2+2. Viết phương trình tiếp tuyến của (C) biết:

  1. Tiếp tuyến có hệ số góc k = 3.
  2. Biết tiếp tuyến vuông góc với đường thẳng (d):x4y+12=0.

Bài 8: Cho đường cong (C):y=x+1x2. Viết phương trình tiếp tuyến của (C):

  1. Biết hoành độ tiếp điểm bằng 1.
  2. Tại giao điểm của (C) với trục hoành.
  3. Biết tiếp tuyến song song với đường thẳng x + 3y – 1 = 0.

Bài 9: Cho đường cong (C):y=1x2x+3. Viết phương trình tiếp tuyến của (C):

  1. Tại giao điểm của (C) với trục tung.
  2. Biết tiếp tuyến có hệ số góc là 15.

Bài 10: Cho đường cong (C):y=2x33x2+9x4. Viết phương trình tiếp tuyến của (C) tại giao điểm của nó với:

  1. Đường thẳng (d):y=7x+4.
  2. Parabol (P):y=x2+8x3.
  3. Đường cong (C):y=x34x2+6x7.

Bài 11: Cho đường cong (C):y=x4+x3x2+x2. Viết phương trình tiếp tuyến của (C) tại giao điểm của (C) với trục hoành.

Bài 12: Cho đường cong (C):y=x+2x2. Viết phương trình tiếp tuyến của (C):

  1. Tại giao điểm của (C) với đường thẳng (Δ):xy1=0.
  2. Biết tiếp tuyến đi qua điểm A(-6;5).

Bài 13: Viết phương trình tiếp tuyến của đồ thị hàm số y=x+32x1 biết tiếp tuyến đó song song với đường phân giác của góc phần tư thứ hai của mặt phẳng tọa độ Oxy.

Bài 14: Viết phương trình tiếp tuyến d của đồ thị hàm số y=2x+3x+1 biết d vuông góc với đường thẳng y=x+2.

Bài 15: Cho hàm số y=13x3m2x2+13 có đồ thị (Cm). Gọi M là điểm thuộc (Cm) có hoành độ bằng (1). Tìm m để tiếp tuyến của (Cm) tại điểm M song song với đường thẳng 5xy=0

Bài 16: Viết phương trình tiếp tuyến của đồ thị hàm số y=x+32x1 biết tiếp tuyến đó song song với đường phân giác của góc phần tư thứ hai của mặt phẳng tọa độ Oxy.

Bài 17: Viết phương trình tiếp tuyến của đồ thị hàm số y=13x32x+3 biết tiếp tuyến này cắt hai tia OxOy lần lượt tại A và B sao cho OB = 2OA.

Bài 18: Lập phương trình tiếp tuyến của đồ thị hàm số y=xx1 sao cho tiếp tuyến đó và hai tiệm cận của đồ thị hàm số cắt nhau tạo thành một tam giác cân.

Bài 19: Tìm m để (Cm): y=x3+3x2+mx+1 cắt đường thẳng y = 1 tại ba điểm phân biệt C(0;1), DE sao cho các tiếp tuyến với (Cm) tại D và E vuông góc với nhau.

Bài 20: Cho hàm số (C): y=x+12x1. Chứng minh rằng với mọi m đường thẳng y=x+m luôn cắt đồ thị (C) tại hai điểm phân biệt A và B. Gọi k1k2 lần lượt là hệ số góc của các tiếp tuyến với (C) tại A và B. Tìm m để tổng k1 + k2 đạt giá trị lớn nhất.

Bài 21: Tìm hai điểm AB thuộc đồ thị (C) của hàm số y=x33x2+2 sao cho tiếp tuyến của (C) tại A và B song song với nhau đồng thời AB=42–√

Bài 22: Tìm điểm M thuộc đồ thị (C) của hàm số y=2x+1x1 sao cho tiếp tuyến của (C) tại điểm M cắt hai đường tiệm cận của (C) tại A và B thỏa mãn tam giác IABcó chu vi nhỏ nhất (với I là giao điểm hai đường tiệm cận).

Bài 23: Tìm các điểm trên đồ thị hàm số y=(x1)2(x4) mà qua đó ta chỉ kẻ được một tiếp tuyến đến đồ thị hàm số.

Bài 24: Tìm các điểm trên đường thẳng y = -2 mà từ điểm đó có thể kẻ được hai tiếp tuyến vuông góc với nhau đến đồ thị hàm số.

Bài 25: Cho hàm số y=x33mx+2. Tìm m để đồ thị hàm số có tiếp tuyến tạo với đường thẳng d:x+y+7=0 một góc α, biết cosα=126

Bài 26: Viết phương trình tiếp tuyến của (C) tại điểm uốn, biết (C):y=x3+6x210. Chứng minh tiếp tuyến này có hệ số góc lớn nhất trong các tiếp tuyến của (C).

Bài 27: Cho hàm số y=x3+3mx2+(m+1)x+1. Tìm m để tiếp tuyến tại điểm có hoành độ x=1 đi qua điểm A(1;2).